Без шума и пыли. Конструктивные особенности тормозных систем электромобилей. Часть 1
14 августа 2021, Иван СОКОЛОВ
У читателя наверняка возникнет вопрос, почему мы решили рассмотреть тормозную систему электрокаров в отдельности? Казалось бы, их тормоза не должны сильно отличаться от привычной нам конструкции, однако эта тема таит в себе много любопытных технических моментов. Чем отличаются тормоза для электромобилей, насколько сложнее их производить и как их обслуживать? На эти вопросы мы постарались ответить вместе с техническими специалистами крупнейших производителей тормозных механизмов – Brembo, TMD Friction и TRW (концерн ZF).
Действительно, если подойти в современному электромобилю и посмотреть на тормозные механизмы, то вряд ли вы заметите что-то чересчур необычное. Обычные суппорты, обычные тормозные диски. Однако перед разработчиками ведущих производителей электромобилей и гибридов сегодня встают действительно сложные с инженерной точки зрения задачи – особенно при конструировании автономного электротранспорта. И эти задачи по своей сложности – под стать проблемам создания сверхъемких быстрозаряжаемых аккумуляторных батарей и их последующей утилизации. Итак, разберем по порядку – какие задачи стоят перед разработчиками тормозных систем ближайшего будущего?
Задача № 1. Соответствие экологическим трендам и снижение массы
Сегодня мы уже вроде свыклись с мыслью, что чуть ли не главной по своей важности задачей перед инженерами автомобильного транспорта стоит вопрос экологии. Любая деталь, механизм или агрегат автомобиля отныне создается с учетом жестких требований экологии, дабы соответствовать нескольким параметрам:
- сокращение вредных выбросов при эксплуатации транспорта;
- возможность вторичного использования/переработки компонентов;
- безопасность для человека в процессе производства;
- малый вес.
Если с первыми тремя требованиями все довольно понятно, то пункт «малый вес» я хоть и поставил отдельно, но по факту его можно отнести к первому пункту. Одна из главных экологических задач, которую правительства развитых стран ставят перед автопроизводителями, является постоянное снижение выбросов двуокиси углерода. И пока что на классическом автомобиле (это справедливо и для электрокаров, хоть немного и опосредовано) добиться этого можно главным образом за счет снижения расхода топлива или энергии. Ну а тут уж математика простая: ниже расход – ниже выбросы CO₂.
И тормозные механизмы в этом пункте не исключение, облегчить здесь можно практически все: вместо обычных чугунных тормозных дисков можно использовать двухсоставные с алюминиевой ступичной частью (минус 15–20 % массы), опорные пластины колодок из стекловолокна использовать вместо металла (минус 30 % массы), а архаичную гидравлику можно и вовсе выкинуть, заменив ее проводами и исполнительными электромеханизмами. Да-да, крупнейшие производители уже давно ведут разработки в этом направлении. Особенно тщательно к этому вопросу подошла компания Brembo, которая разработала технологию BrakeByWire, которая представляет собой электрогидравлическую систему на передней оси и полностью электрическую на задней. Достоинств и особенностей у такой технологии море, но останавливаться на ней не будем – это тема для отдельной статьи.
Задача № 2. Слаженная работа основных тормозов совместно с рекуперативным торможением
Этот аспект электротранспорта вводит многих в заблуждение: можно подумать, что если уж электромобиль и способен замедляться силами собственного мотор-генератора, который при этом процессе изящно возвращает затраченную на торможение транспортного средства энергию обратно в аккумуляторные батареи, то можно установить крошечные классические тормоза, которые не будут изнашиваться вовсе. Мягко говоря, утверждение не совсем верно.
Да, действительно на рекуперацию (согласно исследованиям TMD Friction) в повседневном режиме езды может приходиться аж до 95% энергии замедления. Ключевое слово – «может». Дело в том, что возможности рекуперативного торможения ограничены и сильно зависят от степени замедления электромобиля (или гибрида) и прочих условий: то есть чем интенсивнее необходимо замедлить транспорт, тем меньше вероятность, что эффективности системы рекуперации будет для этого достаточно. А если на дороге возникнет необходимость экстренной остановки, то тормоза должны будут работать на все 100 %, как на обычном автомобиле.
Задача № 3. Грамотная работа ПО
Из предыдущего пункта плавно вытекает требование, которое относится к исполнительному тормозному механизму лишь косвенно – это слаженная работа тормозной системы, электронных блоков управления автомобиля, а также корректная настройка программного обеспечения.
Приведу для наглядности два пример с наиболее известной маркой электрокаров – Tesla. В 2018 году некоммерческая организация Consumer Reports по итогам тестирования Tesla Model 3 выявила проблемы в работе ее тормозной системы: в результате тестов длина тормозного пути электрокара при экстренной остановке со скорости 60 миль в час (96 км/ч) составила 46,33 метра, что почти на 2 метра больше, чем тормозной путь полноразмерного пикапа Ford F-150 и на 6,3 метра длиннее среднего показателя в классе. Как оказалось, проблема крылась в неправильном алгоритме работы тормозной системы, который вскоре был вскоре откорректирован при очередном обновлении программного обеспечения модели.
Пример 2. Зимой владельцы нового кроссовера Model Y отмечали, что «их машины в мороз первое время тормозят не так, как они привыкли». Проблемы были также в настройках электронной системы, а именно – в особенностях работы системы рекуперации, которая может работать в полную силу только при прогретой тяговой батарее.
Проблему, как и следовало ожидать, решила новая прошивка, которая обеспечила более раннюю активацию обычных тормозов в зимних условиях.
Задача № 4. Отсутствие пыли, шума и ржавчины
Одной из главных задач, стоящих перед автомобилестроительными компаниями, кроме сокращения выбросов и снижения веса автомобилей, является сокращение образования пыли, особенно, если в ней содержатся частицы металлов. Отчасти это эстетическое требование (люди не любят, когда колесные диски покрываются черным налетом), а отчасти – снова экологическое. Так, относительно недавно было установлено, что медь вместе с другими металлами, оседающими на дороге в результате износа тормозных колодок, попадая в водные потоки и реки, становится высоко токсичной для некоторых водных микроорганизмов. Это отразилось на экологических нормах – одни из самых суровых действуют в штатах Калифорния и Вашингтон, где в 2010 году были приняты законы, согласно которым тормозные колодки должны иметь меньшее содержание меди и тяжелых металлов. К таким же нормам стремятся и европейские производители.
Но если требования к пыли справедливы и для обычных автомобилей, то особые пожелания к низкому уровню шума при торможении – требование исключительно «новой волны». Так как электромобили работают тихо, то владельцы быстро замечают малейшее дребезжание подвески или скрежет тормозов, в то время как в бензиновых или дизельных автомобилях двигатель может заглушить эти шумы. Поэтому автопроизводители дружно озаботились этой задачей, дабы сохранить драгоценного клиента.
И все бы ничего, если бы эта задача решалась безболезненным путем… Да, беспыльные и бесшумные колодки уже существуют (например, безасбестовая органика NAO), вот только разработаны они с учетом специфики стандартов и требований японских, корейских и американских автопроизводителей, а для стран Европы с их более строгими стандартами эффективности торможения они не очень-то и подходят. Кроме того, такие колодки плохо справляются с образованием ржавчины на тормозных дисках. Впрочем, более подробно об этих нюансах нам расскажут технические эксперты ведущих производителей систем торможения.
Еще никто не оставил свои комментарии. Ваш комментарий будет первым.